skip to main content


Search for: All records

Creators/Authors contains: "Brady, Siobhan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 1, 2025
  2. Summary

    The roles ofSHORT‐ROOT(SHR) andSCARECROW(SCR) in ground tissue patterning and differentiation have been well established in the root ofArabidopsis thaliana. Recently, work in additional organs and species revealed the extensive functional diversification of these genes, including regulation of cortical divisions essential for nodule organogenesis in legume roots, bundle sheath specification in the Arabidopsis leaf, patterning of inner leaf cell layers in maize, and stomatal development in rice. The co‐option of distinct functions and cell types is attributed to different mechanisms, including paralog retention, spatiotemporal changes in gene expression, and novel protein functions. Elaborating our knowledge of theSHRSCRmodule further unravels the developmental regulation that controls diverse forms and functions within and between species.

     
    more » « less
  3. Gleadow, Ros (Ed.)
    Abstract Two sorghum varieties, Shanqui Red (SQR) and SRN39, have distinct levels of susceptibility to the parasitic weed Striga hermonthica, which have been attributed to different strigolactone composition within their root exudates. Root exudates of the Striga-susceptible variety Shanqui Red (SQR) contain primarily 5-deoxystrigol, which has a high efficiency for inducing Striga germination. SRN39 roots primarily exude orobanchol, leading to reduced Striga germination and making this variety resistant to Striga. The structural diversity in exuded strigolactones is determined by a polymorphism in the LOW GERMINATION STIMULANT 1 (LGS1) locus. Yet, the genetic diversity between SQR and SRN39 is broad and has not been addressed in terms of growth and development. Here, we demonstrate additional differences between SQR and SRN39 by phenotypic and molecular characterization. A suite of genes related to metabolism was differentially expressed between SQR and SRN39. Increased levels of gibberellin precursors in SRN39 were accompanied by slower growth rate and developmental delay and we observed an overall increased SRN39 biomass. The slow-down in growth and differences in transcriptome profiles of SRN39 were strongly associated with plant age. Additionally, enhanced lateral root growth was observed in SRN39 and three additional genotypes exuding primarily orobanchol. In summary, we demonstrate that the differences between SQR and SRN39 reach further than the changes in strigolactone profile in the root exudate and translate into alterations in growth and development. 
    more » « less
  4. Abstract Epigenomics is the study of molecular signatures associated with discrete regions within genomes, many of which are important for a wide range of nuclear processes. The ability to profile the epigenomic landscape associated with genes, repetitive regions, transposons, transcription, differential expression, cis-regulatory elements, and 3D chromatin interactions has vastly improved our understanding of plant genomes. However, many epigenomic and single-cell genomic assays are challenging to perform in plants, leading to a wide range of data quality issues; thus, the data require rigorous evaluation prior to downstream analyses and interpretation. In this commentary, we provide considerations for the evaluation of plant epigenomics and single-cell genomics data quality with the aim of improving the quality and utility of studies using those data across diverse plant species. 
    more » « less
  5. null (Ed.)
    Abstract Twenty years ago, the Arabidopsis thaliana genome sequence was published. This was an important moment as it was the first sequenced plant genome and explicitly brought plant science into the genomics era. At the time, this was not only an outstanding technological achievement, but it was characterized by a superb global collaboration. The Arabidopsis genome was the seed for plant genomic research. Here, we review the development of numerous resources based on the genome that have enabled discoveries across plant species, which has enhanced our understanding of how plants function and interact with their environments. 
    more » « less
  6. Abstract Progress in sequencing, microfluidics, and analysis strategies has revolutionized the granularity at which multicellular organisms can be studied. In particular, single-cell transcriptomics has led to fundamental new insights into animal biology, such as the discovery of new cell types and cell type-specific disease processes. However, the application of single-cell approaches to plants, fungi, algae, or bacteria (environmental organisms) has been far more limited, largely due to the challenges posed by polysaccharide walls surrounding these species’ cells. In this perspective, we discuss opportunities afforded by single-cell technologies for energy and environmental science and grand challenges that must be tackled to apply these approaches to plants, fungi and algae. We highlight the need to develop better and more comprehensive single-cell technologies, analysis and visualization tools, and tissue preparation methods. We advocate for the creation of a centralized, open-access database to house plant single-cell data. Finally, we consider how such efforts should balance the need for deep characterization of select model species while still capturing the diversity in the plant kingdom. Investments into the development of methods, their application to relevant species, and the creation of resources to support data dissemination will enable groundbreaking insights to propel energy and environmental science forward. 
    more » « less
  7. Summary

    Inorganic phosphate (Pi) is a necessary macronutrient for basic biological processes. Plants modulate their root system architecture (RSA) and cellular processes to adapt to Pi deprivation albeit with a growth penalty. Excess application of Pi fertilizer, on the contrary, leads to eutrophication and has a negative environmental impact.

    We compared RSA, root hair elongation, acid phosphatase activity, metal ion accumulation, and brassinosteroid hormone levels ofSolanum lycopersicum(tomato) andSolanum pennellii, which is a wild relative of tomato, under Pi sufficiency and deficiency conditions to understand the molecular mechanism of Pi deprivation response in tomato.

    We showed thatS.pennelliiis partially insensitive to phosphate deprivation. Furthermore, it mounts a constitutive response under phosphate sufficiency. We demonstrate that activated brassinosteroid signaling through a tomato BZR1 ortholog gives rise to the same constitutive phosphate deficiency response, which is dependent on zinc overaccumulation.

    Collectively, these results reveal an additional strategy by which plants can adapt to phosphate starvation.

     
    more » « less